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ABSTRACT 

Dynamic networks are becoming very useful to model periodic 

behavior seen in sensor networks, low orbit satellites, ad hoc 

networks and other communication systems. To study those 

networks, the use of Evolving Graphs (EG) has several 

advantages. Mono-objective EG based algorithms as the EG 

Foremost and the EG Shortest were specially design to solve 

routing problems in dynamic networks. These algorithms clearly 

outperform state of the art routing approaches as DSDV, DSR and 

AODV; however, they only optimize one cost function as a time. 

On the contrary, this work models the problem as a purely Multi-

Objective Optimization Problem (MOP) and proposes a Multi-

Objective Evolutionary Algorithm (MOEA) to solve it. In fact, the 

implementation of a Strength Pareto Evolutionary Algorithm 

(SPEA) proved to be able to calculate a set of Pareto routes which 

contains solutions that are as good as the optimal ones calculated 

by the EG Foremost and the EG Shortest algorithms when 

considering a single objective, but may be even better when all 

cost functions are simultaneously considered. Experimental 

results confirm the advantage of using a MOEA for this problem. 

Categories and Subject Descriptors 

C.2.1 [Computer – Communication Networks]: Network 

Architecture and Design – Network topology, Store and forward 

networks. 

C.2.2 [Computer – Communication Networks]: Network 

Protocols – Routing protocols. 

General Terms 

Algorithms, Measurement, Performance. 

Keywords 

Multi-Objective Problem (MOP), Multi-Objective Evolutionary 

Algorithm (MOEA) Strength Pareto Evolutionary Algorithm 

(SPEA), Periodic Dynamic Networks, Routing 

1. INTRODUCTION 
A dynamic network is composed by nodes which connect and 

disconnect from the network. The periods of disconnection could 

be in a planned, known or unknown way. The network could be 

centralized or ad-hoc [1, 2]. A path should be found to transmit a 

packet from a source node (remittent) to a destination (recipient). 

Internal nodes act as forwarders. If a node in the path is absent, 

the previous node should buffer the packet until the link to the 

node exists. A network is periodic if exists a period T such that at 

any instants t and t + T, the network has the same nodes and links 

attached, i.e., the same instant topology. 

An Evolving Graph (EG) is a formalism that represents the 

connectivity state of a network at any instant [2]. It is composed 

by a set of sub graphs, one per era. An era is a period of time 

where the set of nodes and links that compose the network, stays 

unchanged. In this context, a journey is composed by ordered 

pairs of hops and eras in which the links should be used to 

transmit that packet. 

Periodic dynamic networks are becoming very useful to model 

several communication networks. Nowadays, they are used to 

study Low Orbit Satellites (LEO), sensor networks [7], mobile ad-

hoc networks (MANET) [4, 6] and mesh networks [3]. 

In what follows, Section 2 presents the problem in a multi-

objective context, while the proposed approach to solve it is 

summarized in Section 3. The simulation environment is 

described in Section 4. Results for three networks are presented in 

Section 5, while the conclusions and future work are left for 

Section 6. 

2. MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM 
The advantages of using Evolving Graphs (EG) to represent 

periodic dynamic networks were presented in [7]. Some known 

algorithms initially used for dynamic network routing are 

Destination-Sequenced Distance-Vector (DSDV) based on the 

Distributed Bellman-Ford algorithm [8], Dynamic Source Routing 

(DSR) [5] and Ad-Hoc Distance-Vector (AODV) [9]. 

In [7], Monteiro demonstrated that two mono-objective 

algorithms: (1) EG Shortest and (2) EG Foremost, are able to find 

an optimal solution in a mono-objective context, (i.e. equally or 

better than those found by the traditional algorithms above 

mentioned). The EG Shortest algorithm minimizes the hop count 

while the EG Foremost algorithm finds the earliest arriving era. 
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Until the present work, all published approaches treat the problem 

in a mono-objectives context, minimizing one of the following 

three journey measures: (1) the hop count, (2) the earliest era a 

packet arrives to the recipient or (3) the fastest a packet traverse 

the network, minimizing the number of eras it needs to travel [7]. 

Therefore, this work proposes to simultaneously consider all three 

objectives (cost functions) in a purely multi-objective context. 

Stating the routing problem as a Multiobjective Optimization 

Problem (MOP) allows finding a set of Pareto solutions that 

simultaneously optimizes the three objective functions which may 

be in conflict [10]; hence, compromised solutions are also of 

interest. Thus, a set of Pareto solutions may contain solutions that 

are as good as the optimal ones calculated by the EG Foremost 

and the EG Shortest algorithms when considering a single 

objective, but they may be even better when all cost functions are 

simultaneously considered, what is not done in a mono-objective 

context. 

3. PROPOSAL OF A MULTI-OBJECTIVE 

EVOLUTIONARY ALGORITHM (MOEA) 
Based on the Darwin and Mendel evolution’s model, an 

Evolutionary Algorithm (EA) performs selective mating between 

individuals in order to evolve a set of solutions (known as 

population), hopefully generating better individuals at each 

generation. The individuals may be compared to each other 

applying Pareto Dominance to make sure that good solutions are 

calculated [10]. There are several good Multi-Objective 

Evolutionary Algorithms (MOEAs) that may be used for this 

problem  [10], but only the Strength Pareto Evolutionary 

Algorithm (SPEA) will be reported in this article. 

3.1 Strength Pareto Evolutionary Algorithm 

(SPEA) 
The Strength Pareto Evolutionary Algorithm (SPEA)  presented in 

[11] implements elitism, maintaining an external population of 

non dominated individuals (optimal solutions in a Pareto sense). 

The strength and fitness are calculated for each individual using 

Pareto dominance relations, as shown in [10]. Selection is 

implemented using a roulette involving both the actual evolving 

generation and the external population where best solutions are 

kept [10]. The probability of choosing an individual using the 

roulette is proportional to its fitness and therefore, to the number 

of individuals it dominates. 

Let N be the set of nodes and E the set of eras in an evolving 

graph EG. Let ns, nr  N, be the source and recipient nodes 

respectively. Let e  E be a particular era. <ns, nr, e> represents a 

packet which is in ns, and needs to be delivered to nr being e the 

actual era in the EG.  

Each individual contains information concerning how to route 

every possible packet <ns, nr, e>. This information is represented 

as a duple <n’,e’>, n’ N, e’ E, where n’ is the next node in the 

journey and e’ the era when the packet should be sent. 

In order to evaluate the performance of an individual, a packet is 

simulated to be sent from each possible source, to each possible 

recipient at each possible era. The objective functions calculated 

with the simulation are: (a) the sum of hops needed to deliver all 

the packets; (b) the sum of eras that the packets have lived since 

creation until recipients receive each transmitted packet (i.e. 

packets lived eras); and (c) the sum of eras spent by the packets 

traversing the network since being first transmitted by the source 

(i.e. traveling eras). The shortest journey has a minimum sum of 

hops, minimizing (a); the foremost journey has a minimum sum of 

lived eras, minimizing (b), while the fastest journey has a 

minimum sum of traveled eras, what minimizes (c). 

An individual is said to be valid if regarding the information it 

contains, all possible packets are assured to reach the recipients. 

At every generation, each individual goes through a crossover and 

mutation processes used to obtain new evolved solutions. As a 

result of those processes, the routing information in those new 

individuals could contain unnecessary loops in the journey, or 

could fragment the network making impossible to reach a 

recipient. Therefore, for a MOEA to be really useful, new 

individuals should be fixed to be valid solutions. Consequently, 

the present work proposes a novel method called reformatory to 

repair a new individual to obtain a valid individual that really is a 

solution of the routing problem in the studied EG. 

3.2 Reformatory: Convert a New Individual 

into a Valid Solution 
Given the routing tables for each era that composes an individual, 

all possible combinations of <ns, nr, e> packets are sent, one at a 

time. Two sorted lists are maintained: one records the visited 

nodes denoted as taboo, so a loop in the journey would be 

discovered; the other list taboo_n tracks, for each node, which 

pairs of adjacent nodes and eras <n’, e’> were already tried as 

next hop in the journey to the recipient. A partition of the network 

is detected if every possible neighbor (adjacent node) at every 

possible era, is present in taboo_n (see Algorithm 1). 

When either a loop or a partition is detected, the algorithm 

performs a rollback and it modifies the routing table to fix the 

problem. Randomly, a new hopping alternative is taken from the 

EG Shortest routing table, from the EG Foremost one [1] or from 

a neighbor and an era <n’,  e’> not present in taboo_n. 

Initially, all routing information is market as test to make sure 

that it will be checked by Algorithm 1 that has the job of making 

sure that every packet can be correctly delivered to destination. If 

this is not the case, it systematically changes routing information  

and marks it as suggested, until every packet gets to its 

recipient, marking at this time each checked entry in the routing 

table as correct. In summary, Algorithm 1 receives a possible 

routing solution (individual) and returns a verified correct 

solution of the problem. 

4. SIMULATIONS 
To make sure that a MOEA is a good alternative to solve periodic 

dynamic networks, extensive simulations were performed to 

compare it to other known algorithms as DSDV, DSR, AODV, as 

well as optimal mono-objective algorithms as EG Shortest and EG 

Foremost. 

To have an idea of the performance of the above algorithms, three 

different scenarios are reported in this paper. A scenario is 

composed by a network topology giving nodes, links and eras 

information as well as a traffic demand with a detailed 

information of each packet to be transmitted, as explained below. 



 

 

4.1 Network Topology 
A network topology specifies every node n   N, and every link 

(ni, nj) at each era e. Three network sizes are reported in this work 

(see Figures 1, 2 and 3). For all the reported simulations, only 15 

eras were considered. The smallest network with five nodes and 

seven links is presented in Figure 1 where the eras at which each 

link exists is presented between brackets on top of each link. For 

example, link (A, C) of Figure 1 only can be used at eras 1, 7 and 

13, i.e., (A, B) only works in three out of 15 eras. 

 

Based on the small topology of Figure 1, a more complex 

topology is presented in Figure 2. This medium size network is 

formed by thirteen nodes and twenty links. 

 

  

 

 

A third more complex network with twenty-four nodes and thirty 

seven links (see Figure 3) is also simulated in the present work. 

 
Figure 3. An EG representing a large sized network 

. 

 

 

Figure 1. An EG representing a small sized network 

. 

 

 

Figure 2. An EG representing a medium sized network 

. 

 

 

Algorithm 1. Pseudocode of the Reformatory procedure 

 

 

 

 

 

 

 

//Let taboo be an ordered list of nodes n, already visited in a journey 

//Let taboo_n[n] be the set of pairs <n’, e> where node n’ is adjacent to node n,  

//and e represents an era already tried. 

//Let ns, nr be the sender and recipient nodes, esr be the era when the packet is available to be sent 

//Let <ns, nr, esr> be a packet to be sent from ns to nr while the simulation is in era esr 

//Let ind[<ns,nr,esr>] be an index that point to the information <n,e> for the next hop 

1. For each pair of nodes and for each era, mark all routing information as test 

2. While there exists information not marked as correct do 

2.1. For each pair of nodes and each era <ns, nr, e> do 

2.1.1. While n ≠ nr 

2.1.1.1. If ind[<n, nr, e>] is marked as test 

2.1.1.1.1. Mark the information of ind[<n, nr, e>] as suggested 

2.1.1.1.2. <n’, e’> ← link indicated by ind[<n, nr, e>] 

2.1.1.1.3. If taboo includes n’, or taboo_n[n] includes <n’,e’>, then  

           perform rollback and try another path 

2.1.1.2. If ind[<n, nr, e>] is marked as correct 

2.1.1.2.1. If taboo includes n’, or taboo_n[n] includes <n’,e’>, then 

           perform rollback and try another path 

2.1.1.3. If ind[<n, nr, e>] is marked as suggested 

2.1.1.3.1. Calculate the set of adjacent nodes to n that are not in taboo, and the available eras 

           that are not in taboo_n[n] 

2.1.1.3.2. If there are no adjacent nodes and available eras, then 

           perform rollback and try another path 

2.1.1.3.3. Choose randomly one of the three possibilities: get the information for ind[<n, nr, e>]  

   from a known routing coming from EG Shortest, EG Foremost, or randomly get a link  

2.1.1.4. Add n to taboo and add ind[<n, nr, e>] to taboo_n[n] 

2.1.1.5. <n,e> ← ind[<n, nr, e>] 

2.2. For each <n, nr, e> of the journey, mark the information as correct 



Given the amount of information needed to detail all the 

information on which eras each link is available, it is presented in 

Table 1 instead of including the information in Figure 3. 

Table 1. Active eras for each link in Figure 3. 

Node Node Eras  Node Node Eras 

A B 3-5  2c 2d 3-4-5 

A C 1-2-4  3a 3c 2-3 

B C 1-3-5  3a 3b 3-5 

B D 1-2-3  3b 3d 5 

B E 3-4-5  3c 3d 3-4-5 

C E 1-4-5  3d 1c 3-4-5 

D E 1-2-4  4a 4b 3-5 

D 1a 1-3-5  4a 4c 2-3 

E 1b 1-2-4  4b 4d 5 

1a 1b 3-5  4b A 3-4-5 

1a 1c 2-3  4c 4d 3-4 

1b 1d 5  4d D 4-5 

1c 1d 3-4-5  4c 3b 2-4 

2a E 1-3-5  b1 3d 1-2-3-4-5 

2b C 1-2-4  b1 2c 1-2-3-4-5 

2a 2c 1-2-3  5a 5b 1-2-3-4-5 

2a 1b 1-2-3-4-5  5a C 3-5 

2a 2b 3-5  5b 2b 2-4 

2b 2d 5     

4.2 Traffic Load 
Traffic is the load specification of a network, i.e. the exact 

description of each packet to be transmitted. A packet is 

represented as a tuple <ns, nr, e>, where ns and nr are the sender 

and recipient nodes. The packet is born at era e, and it is 

scheduled to be sent according to the node’s routing table. 

For space reasons, this work only presents simulations using 

heavy loaded networks. The number of packets to be transmitted 

in the simulations is calculated as 90 % of the number of nodes 

multiplied by the number of links that constitute the network. As 

an example, Table 2 summarizes the 31 packets randomly chosen 

for the first simulation with the smallest network shown in Figure 

2. Traffic load in a congested medium sized network considers 

234 packets (for Figure 2), while 779 packets are considered for 

the largest network of Figure 3. 

Table 2. Traffic Load for the Topology of Figure 1 

Source Recipient Era  Source Recipient Era 

A D 1  B E 10 

A D 2  B E 11 

A D 3  B E 12 

A D 4  B E 13 

A D 5  B E 14 

A D 6  E A 1 

A D 7  E A 3 

A D 8  E A 5 

A D 9  E A 7 

A D 10  E A 8 

A D 11  E A 11 

B E 4  E A 12 

B E 6  E A 13 

B E 7  E A 14 

B E 8  E A 15 

B E 9     

4.3 SPEA Parameters 
To run the Strength Pareto Evolutionary Algorithm with the 

special adaptation for this problem, as the reformatory presented 

in section 3.2, some parameters should be defined. Table 3 shows 

an example of the value for each parameter used to solve one 

instance of the smallest problem presented in Figure 1. 

In Table 3, Pmax represents the constant size of the evolutionary 

population at each generation, while P’max represents the 

maximum allowed size for the external population where non-

dominated optimal solutions are stored. Th number of iterations is 

given by Imax, naming each iteration as Ik. 

To optimize in a multiobjective context the solutions found by the 

optimal mono-objective algorithms EG Shortest and EG 

Foremost, they may be inserted in the evolutionary population  P 

after EG insertion iterations. That way, better solutions may be 

easily found when all three objective functions are simultaneously 

considered. The insertion of the EG Foremost and EG Shortest 

solutions [1] into the external population P’ has the effect of 

speeding up the search of non dominated solutions and, when 

possible, dominate them. 

When the Reformatory procedure presented in Section 3.2 finds a 

problem in an individual routing table, it tries to fix it changed the 

problematic value. To do so, it consults the routing table found by 

the EG Shortest with probability P_EG_f, or it looks for an entry 

in the routing table calculated with  EG Foremost, with 

probability P_EG_s. Alternatively, it randomly takes a valid 

neighbor in a valid era with probability P_rand. Therefore, the 

reformatory randomly decides a strategy to fix routing 

information, with probabilities shown in Table 3.  
 

Table 3. Example parameters used in SPEA. 

Size Pmax Imax P’max 

EG 

insert

ion 

P_

EG

f 

P_

EG

s 

P_r

and 

Small 10 1000 10000 1 0,4 0,4 0,2 

 

5. RESULTS 
In all tests performed, the SPEA always found very good solutions 

at the prize of running time. The number of solutions depends 

mainly on the population size and the number of iterations as will 

be presented in Table 9.  

The following sections present experimental results for the three 

topologies shown in Figures 1, 2 and 3, obtained using the 

following 6 algorithms: 

1. Destination-Sequenced Distance-Vector (DSDV). 

2. Dynamic Source Routing (DSR). 

3. Ad-Hoc Distance-Vector (AODV). 

4. EG shortest (EG s). 

5. EG foremost (EG f). 

6. Strength Pareto Evolutionary Algorithm (SPEA). 

 



5.1 Simulations with a Small Network 
Simulations performed with the network presented in Figure 1 

have resulted in the solutions shown in Figure 4. To simplify the 

reader understanding, Figure 4 shows an average of only two 

objective functions: (a) hop count and (b) packet lived eras. The 

third objective function (c) traveling eras, is not shown for 

simplicity but it may be appreciated given the large number of 

compromised solutions found by the SPEA algorithm, using 

parameters presented in Table 3. A legend in the right side of 

Figure 4 indicates which algorithms were tested. 

Table 4 presents a very short summary of the 3 objective functions 

calculated by the EG shortest, EG foremost and two out of 168 

SPEA solutions. As can be read in the comment column of the 

table, a solution calculated with SPEA, denoted as SPEA 1 

dominates the solution found using EG foremost, given that both 

have the same average eras to destination (of 2.61) but the SPEA 

1 solution has smaller values in the other two objective functions. 

At the same time, another solution calculated using SPEA, 

denoted as SPEA 2, dominates the solution found using EG 

shortest, given that both need an average of 1.68 hops to arrive, 

but SPEA 2 needs in average a fewer number of eras. Remember 

that EG foremost and EG shortest calculate optimal solutions in a 

mono-objective context [1]; therefore, it is remarkable that SPEA 

can find better solutions than those EG algorithms. 

 

Table 4. Average objective functions calculated with solutions 

obtained by algorithms SPEA, EG shortest and EG foremost, 

for a small network. 

Algorithm 
(a) Hop 

count 

(b) Eras to 

destination 

(c) Eras 

traveling 
Comment 

EG 

foremost 
2.03 2.61 1.32 

dominated 

by SPEA 1 

EG shortest 
1.68 4.07 1.16 

dominated 

by SPEA 2 

SPEA 1 
1.90 2.61 0.94 

dominates 

EG f 

SPEA 2 
1.68 3.55 0.90 

dominates 

EG s 

 

Another advantage of the SPEA algorithm proposed in this work 

is its ability to find a whole set of Pareto solutions that may be 

used to decide which solution best fit the routing necessity of the 

users. As an example, for this small network, 168 solutions were 

found, as shown in the Figure 4 as dashes. 

For completeness, it should be mentioned that EG Foremost and 

EG Shortest always dominate DSDV, DSR and AODV solutions as 

reported in [1]. In turns, SPEA is able to calculate solutions that 

dominate all of them. This fact is emphasized in the following 

subsections where the named algorithms are compared in each 

measured domain. Three individuals among the 168 SPEA’s 

solution set were selected to facilitate comparison. They are 

denoted as: SPEA 1, SPEA 2 and SPEA 3. 

 

 

5.1.1 Journey Hops 
As expected, the EG shortest algorithm always found the shortest 

journey to deliver a packet. Figure 5 shows how many hops it 

takes for each of the thirty-one packets to be delivered to the 

recipient. None of the other algorithms named in the legend’s 

graph performed better considering only this objective function 

(hop count). Because EG Shortest is an adaptation of Dijkstra's 

Shortest Path Algorithm [1], it is said to be optimal. 

 

The SPEA found a solution, named SPEA 2, which performs as 

well as EG Shortest considering the hop count (see Figure 6). 

However, as shown in Table 4, it performs better than EG 

Shortest making the journeys faster in average and reducing the 

packets life, so SPEA 2 is a better solution than the one calculated 

by EG Shortest. 

 

5.1.2 Eras to Destination  
A packet is born when information is ready to be delivered at the 

sender node. The packet’s life is considered to be the elapsed 

Figure 6. Hops count routing with SPEA solutions. 

Figure 5. Hops taken for each packet to reach the recipient. 

Figure 4. Example set of solutions for a small sized network. 

http://www.dgp.toronto.edu/people/JamesStewart/270/9798s/Laffra/DijkstraApplet.html
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number of eras between the era in which it is born and the era in 

which it reaches the receiver node. 

The algorithm EG Foremost is an adaptation of Dijkstra's Shortest 

Path Algorithm but it minimizes the packet’s life rather than the 

journey’s length [1]. It’s said to be optimal when only this 

objective function is considered.  

Figure 7 shows a comparison among the 5 mono-objective 

algorithms listed in the graph’s legend. As expected, the EG 

Foremost performs better than EG Shortest and DSDV, but it is 

interesting to note that it performs equally well as DSR and AODV 

for the topology given in Figure 1. 

 

The SPEA found a solution, named SPEA 1, which performs as 

well as EG Foremost when only the average number of eras to 

destinations is considered (see Figure 8). However, as shown in 

Table 4, it performs better than EG Foremost when the other two 

objective functions are considered, making the journeys faster and 

reducing the hop count average in the journeys, so SPEA 1 is a 

better solution than the one proposed by EG Foremost algorithm. 

 

5.1.3 Traveled Eras  
A journey is faster than other if it takes a smaller number of eras 

traversing the route until the recipient. The traveled eras count is 

calculated as the arriving era minus the era a packet leaves for the 

first time its source. If the packet goes from sender to recipient in 

the same era, it is said to be a journey of cero eras. 

An algorithm, EG Fastest, could be an adaptation of Dijkstra's 

Shortest Path Algorithm, minimizing the number of eras that a 

packet takes to be routed from sender to recipient [1]. Until the 

present publication it was not implemented nor published. As in 

previews subsections, EG Fastest would find the optimal journey 

under a mono-objective framework but it might be dominated by a 

solution calculated by the SPEA algorithm. 

The three SPEA’s solutions of Figure 9 perform better than the 

algorithms EG Shortest, EG Foremost, DSDV, DSR and AODV.  

 

5.2 Simulations with a Medium Network 
Simulations performed with the medium sized network of Figure 

2, is summarized in the Figure 10, where SPEA used the 

parameters shown in Table 5. 

Table 5. Example parameters used in SPEA. 

Size Pmax Imax P’max 

EG 

inser

tion 

P_

EG

f 

P_

EG

s 

P_r

and 

Medium 10 1000 10000 1 0,3 0,3 0,4 

 

Table 6 presents the average values of the 3 objective functions 

calculated by the EG shortest, EG foremost and two out of 53 

SPEA solutions, denoted as SPEA’ 1 and SPEA’ 2. In this case, 

the solutions SPEA’2 and EG Foremost have the same objective 

function values. Both solutions SPEA’ 1 and EG Shortest have the 

same hop count value (of 2.927), but the SPEA’ 1 has smaller 

values in the eras to destination and eras traveling objective 

functions. 

Table 6. Average objective functions calculated with solutions 

obtained by algorithms SPEA, EG shortest and EG foremost, 

for a medium network. 

Algorithm 
(a) Hop 

count 

(b) Eras to 

destination 

(c) Eras 

traveling 
Comment 

EG foremost 3.526 6.482 4.897  

EG shortest 2.927 10.667 7.449 
dominated 

by SPEA’ 1 

SPEA’ 1 2.927 10.517 7.376 
dominates 

EG f 

SPEA’ 2 3.526 6.482 4.897  

 

Figure 10 shows the solutions of the algorithms named in the 

legend’s graph. The set of 53 non dominated solutions calculated 

by SPEA includes the solution found by EG Foremost and a 

solution that dominates the one found by EG Shortest, 

outperforming it once more (see Table 6).  

Figure 9. Number of traveling eras for each packet using 

different algorithms. 

Figure 7. Life of each packet for mono-objective algorithms. 

Figure 8. Life of each packet for different algorithms. 
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5.3 Simulations with a Large Network 
A network composed by twenty-four nodes was presented in 

Figure 3. Using the parameters showed in Table 7 and traffic of 

630 packets, a test was performed in the same way as the above 

described. Experimental results are presented in Figure 11. 

Table 7. Example parameters used in SPEA. 

Size Pmax Imax P’max 

EG 

inser

tion 

P_

EG

f 

P_

E

Gs 

P_r

and 

Large 10 100 10000 1 0,3 0,3 0,4 

 

The algorithm EG Shortest performed as well as the DSDV in the 

hop count measure. The algorithm EG Foremost exceeded DSR 

and AODV performance in the packet life’s measure. 

In this case, the SPEA approach found 22 non dominated 

solutions, three of them denoted as SPEA’’ 1, SPEA’’ 2 and 

SPEA’’ 3. 

 

The objective functions average values are briefly summarized in 

Table 8. The solution set contain those proposed by the EG 

Shortest and EG Foremost algorithms (SPEA’’ 1 and SPEA’’ 2), 

and also contains solutions (SPEA’’ 3) that responds to a trade-off 

among the three different objective functions: (a) hop count, (b) 

packets life and (c) traveled eras. 

Table 8. Average objective functions calculated with solutions 

obtained by algorithms SPEA, EG shortest and EG foremost, 

for a large network. 

Algorithm 
(a) Hop 

count 

(b) Eras to 

destination 

(c) Eras 

traveling 

EG foremost 4.379 0.548 4.897 

EG shortest 3.033 8.927 3.27 

SPEA’’ 1 3.033 8.927 3.27 

SPEA’’ 2 4.379 0.548 4.897 

SPEA’’ 3 3.443 1.825 7.203 

 

5.4 Variation of SPEA Parameters 
The observations asserted in the present section, are based on an 

exhaustive testing over the small network of Figure 1 and the 

same traffic definition of thirty one packets presented in Table 2. 

Experimental results are presented in Table 9 for different values 

of the used parameter.  

Table 9 is similar to Tables 3, 5 and 6, but it also includes other 

columns defined below. Solutions gives the number of 

individuals that compose the Pareto front calculated by the SPEA 

after Imax iterations; Non Dominated Solutions is the number of 

solutions found by the SPEA that are not dominated by the any 

solution found by other algorithms as DSDV, DSR, AODV, EG 

Shortest and EG Foremost. Dominates EGf and Dominates EGs 

indicate whereas there exist at least one solution found by the 

SPEA which performs better than the solution calculated by EG 

Foremost or EG Shortest, respectively. 

Each test instance will be referred by an index in the first column 

of Table 9 to facilitate references. A set of instances indexed by 

the first column will be presented between curly brackets. For 

example, instances 7, 8 and 9 will be denoted as {7, 8, 9}. 

Finally, it is worth saying that the number of solutions found by 

the SPEA in its successive iterations, does not assure quality. In 

contrast, the valuable ones are the non dominated solutions, 

given that they are part of the Pareto front with the non dominated 

solutions calculated with all the other algorithms, if they exist. 

5.4.1 Size of the population 
When maintaining constant the other parameters, increasing the 

size of the population improves exploration and therefore, the 

number of non dominated solutions. As an example, consider the 

set of tests {7, 8, 9} of Table 9 when SPEA varies its population 

size and notably improves the quality of the found solutions. 

Although {9} has fewer solutions in its Pareto front than {8}, the 

quality of the solutions are clearly better, which could be seen 

from the enormous improvement in the number of non dominated 

solutions. 

The magnitude of improvement decreases when EG insertion is 

not set to cero (e.g. like in {10, 11, 12}), or when the external 

population includes solutions that dominates the EG Shortest or 

EG Foremost ones.  

Figure 11. Example set of solutions for a large sized network. 

Figure 10. Example set of solutions for a medium sized network. 



5.4.2 Number of iterations 
Increasing the number of iterations has a direct influence over the 

number of non dominated solutions found, as can be seen in {2, 3, 

4}. Therefore, increasing the number of iterations has a similar 

effect than incrementing the size of the population (see section 

5.4.1) in the non dominated solutions column. 

5.4.3 Probabilities at the reformatory 
In general, simulations used the same probabilities for P_EGf and 

P_EGs, thus, to avoid possible bias. Most of the times, the best 

experimental results were obtained with P_EGf = P_EGs = 0.3 

and P_rand = 0,4, as can be seen when considering the instance 

sets {10, 15, 16} and {1, 5, 8} from Table 9. 

Nevertheless, when the set {12, 17, 18} is considered it is 

possible to see that not always the best distribution is the one 

described above. 

 

6. CONCLUSIONS AND FUTURE WORK 
Given that dynamic networks are becoming very useful to model 

periodic behavior seen in sensor networks, low orbit satellites, ad 

hoc networks and other communication systems, it is very useful 

to study those networks using Evolving Graphs (EG), as 

demonstrated in [1]. Up to now, this problem was only studied 

considering a single objective function as (a) the sum of hops 

needed to deliver all the packets; (b) the sum of eras that the 

packets have lived since creation until recipients receive each 

transmitted packet; and (c) the sum of eras spent by the packets 

traversing the network since being first transmitted by the source. 

This work models the above problem as a purely multiobjective 

problem (MOP), for the first time. To solve this multi-criteria 

problem, a Multi-Objective Evolutionary Algorithm (MOEA) was 

developed inspired in the Strength Pareto Evolutionary Algorithm 

(SPEA), which was adapted to the specific problem with 

specialized procedures as the Reformatory described in section 

3.2. In this way, the proposed approach was able to find a whole 

set of Pareto solutions that not only contains individuals 

competitive with state of the art algorithms, but also is able to 

calculate individuals that dominate solutions considered optimal 

when only a single objective function is considered, given that the 

proposed approach is able to improve in a multiobjective context 

solutions that may be considered optimal in a single-objective 

approach. It is also important to remark the advantage of 

calculating a whole set of trade-off solutions in only one run of 

the algorithm, giving the decision maker the ability to choose the 

alternative that best fit his needs. 

Future work could include deviations in the planned behavior of 

each node, using a predefined EG as a guideline or estimation of 

the network state at each era. Quality of service may also be 

considered as well as the alternatives to avoid congestion, 

managing flow control mechanisms. 
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